Relaxation and Integral Representation for Functionals of Linear Growth on Metric Measure spaces

Abstract: This article studies an integral representation of functionals of linear growth on metric measure spaces with a doubling measure and a Poincaré inequality. Such a functional is defined via relaxation, and it defines a Radon measure on the space. For the singular part of the functional, we get the expected integral representation with respect to the variation measure. A new feature is that in the representation for the absolutely continuous part, a constant appears already in the weighted Euclidean case. As an application we show that in a variational minimization problem involving the functional, boundary values can be presented as a penalty term.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
Relaxation and Integral Representation for Functionals of Linear Growth on Metric Measure spaces ; volume:4 ; number:1 ; year:2016 ; extent:26
Analysis and geometry in metric spaces ; 4, Heft 1 (2016) (gesamt 26)

Urheber
Hakkarainen, Heikki
Kinnunen, Juha
Lahti, Panu
Lehtelä, Pekka

DOI
10.1515/agms-2016-0013
URN
urn:nbn:de:101:1-2024041116315871017321
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
15.01.20252025, 10:24 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Hakkarainen, Heikki
  • Kinnunen, Juha
  • Lahti, Panu
  • Lehtelä, Pekka

Ähnliche Objekte (12)