Arbeitspapier
Bounding Program Benefits When Participation Is Misreported
In empirical research, measuring correctly the benefits of welfare interventions is incredibly relevant for policymakers as well as academic researchers. Unfortunately, the endogenous program participation is often misreported in survey data and standard instrumental variable techniques are not sufficient to point identify and consistently estimate the effects of interest. In this paper, we focus on the weighted average of local average treatment effects (LATE) and (i) derive a simple relationship between the causal and the identifiable parameter that can be recovered from the observed data, (ii) provide an instrumental variable method to partially identify the heterogeneous treatment effects, (iii) formalize a strategy to combine administrative data on the misclassification probabilities of treated individuals to further tighten the bounds. Finally, we use our method to reassess the benefits of participating to the 401(k) pension plan on savings.
- Sprache
-
Englisch
- Erschienen in
-
Series: IZA Discussion Papers ; No. 13430
Semiparametric and Nonparametric Methods: General
Single Equation Models; Single Variables: Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions
Single Equation Models: Single Variables: Instrumental Variables (IV) Estimation
Multiple or Simultaneous Equation Models: Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions
Model Construction and Estimation
causality
binary treatment
endogenous measurement error
discrete or multiple instruments
weighted average of LATEs
endogeneity
program evaluation
Zhang, Lina
- Handle
- Letzte Aktualisierung
-
20.09.2024, 08:21 MESZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Tommasi, Denni
- Zhang, Lina
- Institute of Labor Economics (IZA)
Entstanden
- 2020