Arbeitspapier

Estimating average marginal effects in nonseparable structural systems

We provide nonparametric estimators of derivative ratio-based average marginal effects of an endogenous cause, X, on a response of interest, Y , for a system of recursive structural equations. The system need not exhibit linearity, separability, or monotonicity. Our estimators are local indirect least squares estimators analogous to those of Heckman and Vytlacil (1999, 2001) who treat a latent index model involving a binary X. We treat the traditional case of an observed exogenous instrument (OXI)and the case where one observes error-laden proxies for an unobserved exogenous instrument (PXI). For PXI, we develop and apply new results for estimating densities and expectations conditional on mismeasured variables. For both OXI and PXI, we use infnite order flat-top kernels to obtain uniformly convergent and asymptotically normal nonparametric estimators of instrument-conditioned effects, as well as root-n consistent and asymptotically normal estimators of average effects.

Language
Englisch

Bibliographic citation
Series: cemmap working paper ; No. CWP31/07

Classification
Wirtschaft
Estimation: General
Semiparametric and Nonparametric Methods: General
Multiple or Simultaneous Equation Models: Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions; Social Interaction Models
Subject
derivative ratio effect, endogeneity, indirect least squares, instrumental variables, measurement error, nonparametric estimator, nonseparable structural equation
Schätztheorie
Nichtparametrisches Verfahren
Methode der kleinsten Quadrate
Statistischer Fehler

Event
Geistige Schöpfung
(who)
Schennach, Susanne
White, Halbert
Chalak, Karim
Event
Veröffentlichung
(who)
Centre for Microdata Methods and Practice (cemmap)
(where)
London
(when)
2007

DOI
doi:10.1920/wp.cem.2007.3107
Handle
Last update
20.09.2024, 8:21 AM CEST

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Schennach, Susanne
  • White, Halbert
  • Chalak, Karim
  • Centre for Microdata Methods and Practice (cemmap)

Time of origin

  • 2007

Other Objects (12)