A Framework to Improve the Implementations of Linear Layers

Abstract: This paper presents a novel approach to optimizing the linear layer of block ciphers using the matrix decomposition framework. It is observed that the reduction properties proposed by Xiang et al. (in FSE 2020) need to be improved. To address these limitations, we propose a new reduction framework with a complete reduction algorithm and swapping algorithm. Our approach formulates matrix decomposition as a new framework with an adaptive objective function and converts the problem to a Graph Isomorphism problem (GI problem). Using the new reduction algorithm, we were able to achieve lower XOR counts and depths of quantum implementations under the s-XOR metric. Our results outperform previous works for many linear layers of block ciphers and hash functions; some of them are better than the current g-XOR implementation. For the AES MixColumn operation, we get two implementations with 91 XOR counts and depth 13 of in-place quantum implementation, respectively. https://tosc.iacr.org/index.php/ToSC/article/view/11633

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
A Framework to Improve the Implementations of Linear Layers ; volume:2024 ; number:2 ; year:2024
IACR transactions on symmetric cryptology ; 2024, Heft 2 (2024)

Urheber
Yuan, Yufei
Wu, Wenling
Shi, Tairong
Zhang, Lei
Zhang, Yu

DOI
10.46586/tosc.v2024.i2.322-347
URN
urn:nbn:de:101:1-2407031854588.848251307011
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
14.08.2025, 10:46 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Yuan, Yufei
  • Wu, Wenling
  • Shi, Tairong
  • Zhang, Lei
  • Zhang, Yu

Ähnliche Objekte (12)