Arbeitspapier

The Roots of Inequality: Estimating Inequality of Opportunity from Regression Trees and Forests

In this paper we propose the use of machine learning methods to estimate inequality of opportunity. We illustrate how our proposed methods—conditional inference regression trees and forests—represent a substantial improvement over existing estimation approaches. First, they reduce the risk of ad-hoc model selection. Second, they establish estimation models by trading off upward and downward bias in inequality of opportunity estimates. The advantages of regression trees and forests are illustrated by an empirical application for a cross-section of 31 European countries. We show that arbitrary model selection may lead to significant biases in inequality of opportunity estimates relative to our preferred method. These biases are reflected in both point estimates and country rankings. Our results illustrate the practical importance of leveraging machine learning algorithms to avoid giving misleading information about the level of inequality of opportunity in different societies to policymakers and the general public.

Sprache
Englisch

Erschienen in
Series: IZA Discussion Papers ; No. 14689

Klassifikation
Wirtschaft
Personal Income, Wealth, and Their Distributions
Equity, Justice, Inequality, and Other Normative Criteria and Measurement
Multiple or Simultaneous Equation Models: Classification Methods; Cluster Analysis; Principal Components; Factor Models
Thema
equality of opportunity
machine learning
random forests

Ereignis
Geistige Schöpfung
(wer)
Brunori, Paolo
Hufe, Paul
Mahler, Daniel Gerszon
Ereignis
Veröffentlichung
(wer)
Institute of Labor Economics (IZA)
(wo)
Bonn
(wann)
2021

Handle
Letzte Aktualisierung
20.09.2024, 08:24 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Brunori, Paolo
  • Hufe, Paul
  • Mahler, Daniel Gerszon
  • Institute of Labor Economics (IZA)

Entstanden

  • 2021

Ähnliche Objekte (12)