Cramer's rule for a class of coupled Sylvester commutative quaternion matrix equations
Abstract: In this article, based on the real representation and Kronecker product, Cramer’s rule for a class of coupled Sylvester commutative quaternion matrix equations is studied and its expression is obtained. The proposed algorithm is very simple and convenient because it only involves real operations. Some numerical examples are provided to illustrate the feasibility of the proposed algorithm.
- Location
-
Deutsche Nationalbibliothek Frankfurt am Main
- Extent
-
Online-Ressource
- Language
-
Englisch
- Bibliographic citation
-
Cramer's rule for a class of coupled Sylvester commutative quaternion matrix equations ; volume:57 ; number:1 ; year:2024 ; extent:12
Demonstratio mathematica ; 57, Heft 1 (2024) (gesamt 12)
- Creator
-
Cai, Xiaomin
Ke, Yifen
Ma, Changfeng
- DOI
-
10.1515/dema-2024-0028
- URN
-
urn:nbn:de:101:1-2412211642311.683774782175
- Rights
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Last update
-
15.08.2025, 7:29 AM CEST
Data provider
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.
Associated
- Cai, Xiaomin
- Ke, Yifen
- Ma, Changfeng