Cramer's rule for a class of coupled Sylvester commutative quaternion matrix equations

Abstract: In this article, based on the real representation and Kronecker product, Cramer’s rule for a class of coupled Sylvester commutative quaternion matrix equations is studied and its expression is obtained. The proposed algorithm is very simple and convenient because it only involves real operations. Some numerical examples are provided to illustrate the feasibility of the proposed algorithm.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
Cramer's rule for a class of coupled Sylvester commutative quaternion matrix equations ; volume:57 ; number:1 ; year:2024 ; extent:12
Demonstratio mathematica ; 57, Heft 1 (2024) (gesamt 12)

Creator
Cai, Xiaomin
Ke, Yifen
Ma, Changfeng

DOI
10.1515/dema-2024-0028
URN
urn:nbn:de:101:1-2412211642311.683774782175
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
15.08.2025, 7:29 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Cai, Xiaomin
  • Ke, Yifen
  • Ma, Changfeng

Other Objects (12)