Artikel

Model risk in portfolio optimization

We consider a one-period portfolio optimization problem under model uncertainty. For this purpose, we introduce a measure of model risk. We derive analytical results for this measure of model risk in the mean-variance problem assuming we have observations drawn from a normal variance mixture model. This model allows for heavy tails, tail dependence and leptokurtosis of marginals. The results show that mean-variance optimization is seriously compromised by model uncertainty, in particular, for non-Gaussian data and small sample sizes. To mitigate these shortcomings, we propose a method to adjust the sample covariance matrix in order to reduce model risk.

Language
Englisch

Bibliographic citation
Journal: Risks ; ISSN: 2227-9091 ; Volume: 2 ; Year: 2014 ; Issue: 3 ; Pages: 315-348 ; Basel: MDPI

Classification
Wirtschaft
Subject
portfolio optimization
asset allocation
model risk
estimation uncertainty
covariance estimation

Event
Geistige Schöpfung
(who)
Stefanovits, David
Schubiger, Urs
Wüthrich, Mario V.
Event
Veröffentlichung
(who)
MDPI
(where)
Basel
(when)
2014

DOI
doi:10.3390/risks2030315
Handle
Last update
10.03.2025, 11:45 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Artikel

Associated

  • Stefanovits, David
  • Schubiger, Urs
  • Wüthrich, Mario V.
  • MDPI

Time of origin

  • 2014

Other Objects (12)