Artikel
Model risk in portfolio optimization
We consider a one-period portfolio optimization problem under model uncertainty. For this purpose, we introduce a measure of model risk. We derive analytical results for this measure of model risk in the mean-variance problem assuming we have observations drawn from a normal variance mixture model. This model allows for heavy tails, tail dependence and leptokurtosis of marginals. The results show that mean-variance optimization is seriously compromised by model uncertainty, in particular, for non-Gaussian data and small sample sizes. To mitigate these shortcomings, we propose a method to adjust the sample covariance matrix in order to reduce model risk.
- Language
-
Englisch
- Bibliographic citation
-
Journal: Risks ; ISSN: 2227-9091 ; Volume: 2 ; Year: 2014 ; Issue: 3 ; Pages: 315-348 ; Basel: MDPI
- Classification
-
Wirtschaft
- Subject
-
portfolio optimization
asset allocation
model risk
estimation uncertainty
covariance estimation
- Event
-
Geistige Schöpfung
- (who)
-
Stefanovits, David
Schubiger, Urs
Wüthrich, Mario V.
- Event
-
Veröffentlichung
- (who)
-
MDPI
- (where)
-
Basel
- (when)
-
2014
- DOI
-
doi:10.3390/risks2030315
- Handle
- Last update
-
10.03.2025, 11:45 AM CET
Data provider
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.
Object type
- Artikel
Associated
- Stefanovits, David
- Schubiger, Urs
- Wüthrich, Mario V.
- MDPI
Time of origin
- 2014