Estimating marginal treatment effects under unobserved group heterogeneity

Abstract: This article studies the treatment effect models in which individuals are classified into unobserved groups based on heterogeneous treatment rules. By using a finite mixture approach, we propose a marginal treatment effect (MTE) framework in which the treatment choice and outcome equations can be heterogeneous across groups. Under the availability of instrumental variables specific to each group, we show that the MTE for each group can be separately identified. On the basis of our identification result, we propose a two-step semiparametric procedure for estimating the group-wise MTE. We illustrate the usefulness of the proposed method with an application to economic returns to college education.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
Estimating marginal treatment effects under unobserved group heterogeneity ; volume:10 ; number:1 ; year:2022 ; pages:197-216 ; extent:20
Journal of causal inference ; 10, Heft 1 (2022), 197-216 (gesamt 20)

Urheber
Hoshino, Tadao
Yanagi, Takahide

DOI
10.1515/jci-2021-0052
URN
urn:nbn:de:101:1-2022072314021719794366
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
15.08.2025, 07:32 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Hoshino, Tadao
  • Yanagi, Takahide

Ähnliche Objekte (12)