Arbeitspapier

Addressing COVID-19 outliers in BVARs with stochastic volatility

The COVID-19 pandemic has led to enormous data movements that strongly affect parameters and forecasts from standard VARs. To address these issues, we propose VAR models with outlier-augmented stochastic volatility (SV) that combine transitory and persistent changes in volatility. The resulting density forecasts are much less sensitive to outliers in the data than standard VARs. Predictive Bayes factors indicate that our outlier-augmented SV model provides the best data fit for the pandemic period, as well as for earlier subsamples of relatively high volatility. In historical forecasting, outlier-augmented SV schemes fare at least as well as a conventional SV model.

ISBN
978-3-95729-881-2
Sprache
Englisch

Erschienen in
Series: Deutsche Bundesbank Discussion Paper ; No. 13/2022

Klassifikation
Wirtschaft
Forecasting Models; Simulation Methods
General Aggregative Models: Forecasting and Simulation: Models and Applications
Prices, Business Fluctuations, and Cycles: Forecasting and Simulation: Models and Applications
Macroeconomic Aspects of International Trade and Finance: Forecasting and Simulation: Models and Applications
Thema
Bayesian VARs
stochastic volatility
outliers
pandemics
forecasts

Ereignis
Geistige Schöpfung
(wer)
Carriero, Andrea
Clark, Todd E.
Marcellino, Massimiliano
Mertens, Elmar
Ereignis
Veröffentlichung
(wer)
Deutsche Bundesbank
(wo)
Frankfurt a. M.
(wann)
2022

Handle
Letzte Aktualisierung
10.03.2025, 11:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Carriero, Andrea
  • Clark, Todd E.
  • Marcellino, Massimiliano
  • Mertens, Elmar
  • Deutsche Bundesbank

Entstanden

  • 2022

Ähnliche Objekte (12)