A conjecture of Mallows and Sloane with the universal denominator of Hilbert series

Abstract: A conjecture of Mallows and Sloane conveys the dominance of Hilbert series for finding basic invariants of finite linear groups if the Hilbert series of the invariant ring is of a certain explicit canonical form. However, the conjecture does not hold in general by a well-known counterexample of Stanley. In this article, we give a constraint on lower bounds for the degrees of homogeneous system of parameters of rings of invariants of finite linear groups depending on the universal denominator of Hilbert series defined by Derksen. We consider the conjecture with the universal denominator on abelian groups and provide some criteria guaranteeing the existence of homogeneous system of parameters of certain degrees. In this case, Stanley’s counterexample could be avoided, and the homogeneous system of parameters is optimal.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
A conjecture of Mallows and Sloane with the universal denominator of Hilbert series ; volume:22 ; number:1 ; year:2024 ; extent:17
Open mathematics ; 22, Heft 1 (2024) (gesamt 17)

Creator
Zhang, Yang
Nan, Jizhu
Ma, Yongsheng

DOI
10.1515/math-2024-0001
URN
urn:nbn:de:101:1-2024031914380585043885
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
14.08.2025, 10:43 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Zhang, Yang
  • Nan, Jizhu
  • Ma, Yongsheng

Other Objects (12)