Artikel
Combining forecasts to enhance fish production prediction: The case of coastal fish production in Morocco
This paper seeks to enhance forecast accuracy by combining three individual forecasting models. These models include: the Autoregressive Integrated Moving Average model (ARIMA), the Generalized Autoregressive Conditional Heteroscedastic model (GARCH), and the Census X11 model. Applied to the Moroccan coastal fish production, the empirical results show that in terms of predictive ability the composite model outperforms the individual forecasting models. In addition, the results reveal that the forecast accuracy gains arising from combining the individual forecasts range from nearly 8% to over 95%.
- Language
-
Englisch
- Bibliographic citation
-
Journal: Atlantic Review of Economics ; ISSN: 2174-3835 ; Volume: 2 ; Year: 2015 ; Pages: 1-19 ; A Coruña: Colegio de Economistas de A Coruña
- Classification
-
Wirtschaft
Forecasting Models; Simulation Methods
Econometric Modeling: Other
Renewable Resources and Conservation: Fishery; Aquaculture
- Subject
-
forecasting
composite model
fish production
- Event
-
Geistige Schöpfung
- (who)
-
Bouras, David
- Event
-
Veröffentlichung
- (who)
-
Colegio de Economistas de A Coruña
- (where)
-
A Coruña
- (when)
-
2015
- Handle
- Last update
-
10.03.2025, 11:41 AM CET
Data provider
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.
Object type
- Artikel
Associated
- Bouras, David
- Colegio de Economistas de A Coruña
Time of origin
- 2015