Artikel

Combining forecasts to enhance fish production prediction: The case of coastal fish production in Morocco

This paper seeks to enhance forecast accuracy by combining three individual forecasting models. These models include: the Autoregressive Integrated Moving Average model (ARIMA), the Generalized Autoregressive Conditional Heteroscedastic model (GARCH), and the Census X11 model. Applied to the Moroccan coastal fish production, the empirical results show that in terms of predictive ability the composite model outperforms the individual forecasting models. In addition, the results reveal that the forecast accuracy gains arising from combining the individual forecasts range from nearly 8% to over 95%.

Language
Englisch

Bibliographic citation
Journal: Atlantic Review of Economics ; ISSN: 2174-3835 ; Volume: 2 ; Year: 2015 ; Pages: 1-19 ; A Coruña: Colegio de Economistas de A Coruña

Classification
Wirtschaft
Forecasting Models; Simulation Methods
Econometric Modeling: Other
Renewable Resources and Conservation: Fishery; Aquaculture
Subject
forecasting
composite model
fish production

Event
Geistige Schöpfung
(who)
Bouras, David
Event
Veröffentlichung
(who)
Colegio de Economistas de A Coruña
(where)
A Coruña
(when)
2015

Handle
Last update
10.03.2025, 11:41 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Artikel

Associated

  • Bouras, David
  • Colegio de Economistas de A Coruña

Time of origin

  • 2015

Other Objects (12)