Hydrophilic Photocrosslinkers as a Universal Solution to Endow Water Affinity to a Polymer Photocatalyst for an Enhanced Hydrogen Evolution Rate
Abstract: A universal approach for enhancing water affinity in polymer photocatalysts by covalently attaching hydrophilic photocrosslinkers to polymer chains is presented. A series of bisdiazirine photocrosslinkers, each comprising bisdiazirine photophores linked by various aliphatic (CL‐R) or ethylene glycol‐based bridge chains (CL‐TEG), is designed to prevent crosslinked polymer photocatalysts from degradation through a safe and efficient photocrosslinking reaction at a wavelength of 365 nm. When employing the hydrophilic CL‐TEG as a photocrosslinker with polymer photocatalysts (F8BT), the hydrogen evolution reaction (HER) rate is considerably enhanced by 2.5‐fold compared to that obtained using non‐crosslinked F8BT photocatalysts, whereas CL‐R‐based photocatalysts yield HER rates comparable to those of non‐crosslinked counterparts. Photophysical analyses including time‐resolved photoluminescence and transient absorption measurements reveal that adding CL‐TEG accelerates exciton separation, forming long‐lived charge carriers. Additionally, the in‐depth study using molecular dynamics simulations elucidates the dual role of CL‐TEG: it enhances water penetration into the polymer matrix and stabilizes charge carriers after exciton generation against undesirable recombination. Therefore, the strategy highlights endowing a high‐permittivity environment within polymer photocatalyst in a controlled manner is crucial for enhancing photocatalytic redox reactivity. Furthermore, this study shows that this hydrophilic crosslinker approach has a broad applicability in general polymer semiconductors and their nanoparticulate photocatalysts.
- Standort
-
Deutsche Nationalbibliothek Frankfurt am Main
- Umfang
-
Online-Ressource
- Sprache
-
Englisch
- Erschienen in
-
Hydrophilic Photocrosslinkers as a Universal Solution to Endow Water Affinity to a Polymer Photocatalyst for an Enhanced Hydrogen Evolution Rate ; day:17 ; month:05 ; year:2024 ; extent:12
Advanced science ; (17.05.2024) (gesamt 12)
- Urheber
-
An, Sanghyeok
Jeong, Kyeong‐Jun
Hassan, Syed Zahid
Ham, Gayoung
Kang, Seonghyeon
Lee, Juhyeok
Ma, Hyeonjong
Kwon, Jieun
Jeong, Sang Young
Yang, Jiwoong
Woo, Han Young
Cho, Han‐Hee
Cha, Hyojung
Son, Chang Yun
Chung, Dae Sung
- DOI
-
10.1002/advs.202309786
- URN
-
urn:nbn:de:101:1-2405181409140.021041521632
- Rechteinformation
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Letzte Aktualisierung
-
14.08.2025, 10:47 MESZ
Datenpartner
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Beteiligte
- An, Sanghyeok
- Jeong, Kyeong‐Jun
- Hassan, Syed Zahid
- Ham, Gayoung
- Kang, Seonghyeon
- Lee, Juhyeok
- Ma, Hyeonjong
- Kwon, Jieun
- Jeong, Sang Young
- Yang, Jiwoong
- Woo, Han Young
- Cho, Han‐Hee
- Cha, Hyojung
- Son, Chang Yun
- Chung, Dae Sung