A class of hyperbolic variational–hemivariational inequalities without damping terms
Abstract: In this article, we study a large class of evolutionary variational–hemivariational inequalities of hyperbolic type without damping terms, in which the functional framework is considered in an evolution triple of spaces. The inequalities contain both a convex potential and a locally Lipschitz superpotential. The results on existence, uniqueness, and regularity of solution to the inequality problem are provided through the Rothe method.
- Location
-
Deutsche Nationalbibliothek Frankfurt am Main
- Extent
-
Online-Ressource
- Language
-
Englisch
- Bibliographic citation
-
A class of hyperbolic variational–hemivariational inequalities without damping terms ; volume:11 ; number:1 ; year:2022 ; pages:1287-1306 ; extent:20
Advances in nonlinear analysis ; 11, Heft 1 (2022), 1287-1306 (gesamt 20)
- Creator
-
Zeng, Shengda
Migórski, Stanisław
Nguyen, Van Thien
- DOI
-
10.1515/anona-2022-0237
- URN
-
urn:nbn:de:101:1-2022072014083828217589
- Rights
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Last update
-
15.08.2025, 7:36 AM CEST
Data provider
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.
Associated
- Zeng, Shengda
- Migórski, Stanisław
- Nguyen, Van Thien