A class of hyperbolic variational–hemivariational inequalities without damping terms

Abstract: In this article, we study a large class of evolutionary variational–hemivariational inequalities of hyperbolic type without damping terms, in which the functional framework is considered in an evolution triple of spaces. The inequalities contain both a convex potential and a locally Lipschitz superpotential. The results on existence, uniqueness, and regularity of solution to the inequality problem are provided through the Rothe method.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
A class of hyperbolic variational–hemivariational inequalities without damping terms ; volume:11 ; number:1 ; year:2022 ; pages:1287-1306 ; extent:20
Advances in nonlinear analysis ; 11, Heft 1 (2022), 1287-1306 (gesamt 20)

Creator
Zeng, Shengda
Migórski, Stanisław
Nguyen, Van Thien

DOI
10.1515/anona-2022-0237
URN
urn:nbn:de:101:1-2022072014083828217589
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
15.08.2025, 7:36 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Zeng, Shengda
  • Migórski, Stanisław
  • Nguyen, Van Thien

Other Objects (12)