Arbeitspapier
Combination Schemes for Turning Point Predictions
We propose new forecast combination schemes for predicting turning points of business cycles. The combination schemes deal with the forecasting performance of a given set of models and possibly providing better turning point predictions. We consider turning point predictions generated by autoregressive (AR) and Markov-Switching AR models, which are commonly used for business cycle analysis. In order to account for parameter uncertainty we consider a Bayesian approach to both estimation and prediction and compare, in terms of statistical accuracy, the individual models and the combined turning point predictions for the United States and Euro area business cycles.
- Sprache
-
Englisch
- Erschienen in
-
Series: Tinbergen Institute Discussion Paper ; No. 11-123/4
- Klassifikation
-
Wirtschaft
Bayesian Analysis: General
Statistical Simulation Methods: General
Forecasting Models; Simulation Methods
Prices, Business Fluctuations, and Cycles: Forecasting and Simulation: Models and Applications
- Thema
-
Turning Points
Markov-switching
Forecast Combination
Bayesian Model Averaging
Prognoseverfahren
Konjunkturprognose
Autokorrelation
Markovscher Prozess
Bayes-Statistik
Modellierung
OECD-Staaten
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Billio, Monica
Casarin, Roberto
Ravazzolo, Francesco
van Dijk, Herman K.
- Ereignis
-
Veröffentlichung
- (wer)
-
Tinbergen Institute
- (wo)
-
Amsterdam and Rotterdam
- (wann)
-
2011
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:41 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Billio, Monica
- Casarin, Roberto
- Ravazzolo, Francesco
- van Dijk, Herman K.
- Tinbergen Institute
Entstanden
- 2011