Ternary approximating non-stationary subdivision schemes for curve design

Abstract: In this paper, an algorithm has been introduced to produce ternary 2m-point (for any integer m ≥ 1) approximating non-stationary subdivision schemes which can generate the linear spaces spanned by {1; cos (α.); sin (α.)}. The theory of asymptotic equivalence is being used to analyze the convergence and smoothness of the schemes. The proposed algorithm can be consider as the non-stationary counter part of the 2-point and 4-point existing ternary stationary approximating schemes, for different values of m. Moreover, the proposed algorithm has the ability to reproduce or regenerate the conic sections, trigonometric polynomials and trigonometric splines.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
Ternary approximating non-stationary subdivision schemes for curve design ; volume:4 ; number:4 ; year:2014 ; pages:371-378 ; extent:8
Open engineering ; 4, Heft 4 (2014), 371-378 (gesamt 8)

Urheber
Siddiqi, Shahid
Younis, Muhammad

DOI
10.2478/s13531-013-0149-y
URN
urn:nbn:de:101:1-2412141811257.738405457327
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
15.08.2025, 07:30 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Siddiqi, Shahid
  • Younis, Muhammad

Ähnliche Objekte (12)