Ternary approximating non-stationary subdivision schemes for curve design

Abstract: In this paper, an algorithm has been introduced to produce ternary 2m-point (for any integer m ≥ 1) approximating non-stationary subdivision schemes which can generate the linear spaces spanned by {1; cos (α.); sin (α.)}. The theory of asymptotic equivalence is being used to analyze the convergence and smoothness of the schemes. The proposed algorithm can be consider as the non-stationary counter part of the 2-point and 4-point existing ternary stationary approximating schemes, for different values of m. Moreover, the proposed algorithm has the ability to reproduce or regenerate the conic sections, trigonometric polynomials and trigonometric splines.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
Ternary approximating non-stationary subdivision schemes for curve design ; volume:4 ; number:4 ; year:2014 ; pages:371-378 ; extent:8
Open engineering ; 4, Heft 4 (2014), 371-378 (gesamt 8)

Creator
Siddiqi, Shahid
Younis, Muhammad

DOI
10.2478/s13531-013-0149-y
URN
urn:nbn:de:101:1-2412141811257.738405457327
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
15.08.2025, 7:30 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Siddiqi, Shahid
  • Younis, Muhammad

Other Objects (12)