Ternary approximating non-stationary subdivision schemes for curve design
Abstract: In this paper, an algorithm has been introduced to produce ternary 2m-point (for any integer m ≥ 1) approximating non-stationary subdivision schemes which can generate the linear spaces spanned by {1; cos (α.); sin (α.)}. The theory of asymptotic equivalence is being used to analyze the convergence and smoothness of the schemes. The proposed algorithm can be consider as the non-stationary counter part of the 2-point and 4-point existing ternary stationary approximating schemes, for different values of m. Moreover, the proposed algorithm has the ability to reproduce or regenerate the conic sections, trigonometric polynomials and trigonometric splines.
- Location
-
Deutsche Nationalbibliothek Frankfurt am Main
- Extent
-
Online-Ressource
- Language
-
Englisch
- Bibliographic citation
-
Ternary approximating non-stationary subdivision schemes for curve design ; volume:4 ; number:4 ; year:2014 ; pages:371-378 ; extent:8
Open engineering ; 4, Heft 4 (2014), 371-378 (gesamt 8)
- Creator
-
Siddiqi, Shahid
Younis, Muhammad
- DOI
-
10.2478/s13531-013-0149-y
- URN
-
urn:nbn:de:101:1-2412141811257.738405457327
- Rights
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Last update
-
15.08.2025, 7:30 AM CEST
Data provider
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.
Associated
- Siddiqi, Shahid
- Younis, Muhammad