Artikel
An iterative method for forecasting most probable point of stochastic demand
The demand forecasting is essential for all production and non-production systems. However, nowadays there are only few researches on this area. Most of researches somehow benefited from simulation in the conditions of demand uncertainty. But this paper presents an iterative method to find most probable stochastic demand point with normally distributed and independent variables of n-dimensional space and the demand space is a nonlinear function. So this point is compatible with both external conditions and historical data and it is the shortest distance from origin to the approximated demand-state surface. Another advantage of this paper is considering ndimensional and nonlinear (nth degree) demand function. Numerical results proved this procedure is convergent and running time is reasonable.
- Sprache
-
Englisch
- Erschienen in
-
Journal: Journal of Industrial Engineering International ; ISSN: 2251-712X ; Volume: 10 ; Year: 2014 ; Pages: 1-9 ; Heidelberg: Springer
- Klassifikation
-
Management
- Thema
-
Uncertainty
First-order Taylor series expansion
State space models
Most probable point
Forecasting practice
Demand forecasting
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Behnamian, J.
Ghomi, S.M.T. Fatemi
Karimi, B.
Moludi, M. Fadaei
- Ereignis
-
Veröffentlichung
- (wer)
-
Springer
- (wo)
-
Heidelberg
- (wann)
-
2014
- DOI
-
doi:10.1007/s40092-014-0064-8
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:42 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Artikel
Beteiligte
- Behnamian, J.
- Ghomi, S.M.T. Fatemi
- Karimi, B.
- Moludi, M. Fadaei
- Springer
Entstanden
- 2014