Arbeitspapier

The bootstrap and the edgeworth correction for semiparametric averaged derivatives

In a number of semiparametric models, smoothing seems necessary in order to obtain estimates of the parametric component which are asymptotically normal and converge at parametric rate. However, smoothing can inflate the error in the normal approximation, so that refined approximations are of interest, especially in sample sizes that are not enormous. We show that a bootstrap distribution achieves a valid Edgeworth correction in case of density-weighted averaged derivative estimates of semiparametric index models. Approaches to bias-reduction are discussed. We also develop a higher order expansion, to show that the bootstrap achieves a further reduction in size distortion in case of two-sided testing. The finite sample performance of the methods is investigated by means of Monte Carlo simulations froma Tobit model.

Sprache
Englisch

Erschienen in
Series: cemmap working paper ; No. CWP12/04

Klassifikation
Wirtschaft
Single Equation Models; Single Variables: Panel Data Models; Spatio-temporal Models
Thema
Bootstrap , Edgeworth correction , Semiparametric averaged derivatives
Nichtparametrisches Verfahren
Theorie
Bootstrap-Verfahren
Fehlerkorrekturmodell

Ereignis
Geistige Schöpfung
(wer)
Nishiyama, Yoshihiko
Robinson, Peter M.
Ereignis
Veröffentlichung
(wer)
Centre for Microdata Methods and Practice (cemmap)
(wo)
London
(wann)
2004

DOI
doi:10.1920/wp.cem.2004.1204
Handle
Letzte Aktualisierung
10.03.2025, 11:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Nishiyama, Yoshihiko
  • Robinson, Peter M.
  • Centre for Microdata Methods and Practice (cemmap)

Entstanden

  • 2004

Ähnliche Objekte (12)