Artikel

Merging with a set of probability measures: a characterization

In this paper, I provide a characterization of a \textit{set} of probability measures with which a prior ``weakly merges.'' In this regard, I introduce the concept of ``conditioning rules'' that represent the \textit{regularities% } of probability measures and define the ``eventual generation'' of probability measures by a family of conditioning rules. I then show that a set of probability measures is learnable (i.e., all probability measures in the set are weakly merged by a prior) if and only if all probability measures in the set are eventually generated by a \textit{countable} family of conditioning rules. I also demonstrate that quite similar results are obtained with ``almost weak merging.'' In addition, I argue that my characterization result can be extended to the case of infinitely repeated games and has some interesting applications with regard to the impossibility result in Nachbar (1997, 2005).

Sprache
Englisch

Erschienen in
Journal: Theoretical Economics ; ISSN: 1555-7561 ; Volume: 10 ; Year: 2015 ; Issue: 2 ; Pages: 411-444 ; New Haven, CT: The Econometric Society

Klassifikation
Wirtschaft
Noncooperative Games
Stochastic and Dynamic Games; Evolutionary Games; Repeated Games
Search; Learning; Information and Knowledge; Communication; Belief; Unawareness
Thema
Bayesian learning
weak merging
conditioning rules
eventual generation
frequency-based prior

Ereignis
Geistige Schöpfung
(wer)
Noguchi, Yuichi
Ereignis
Veröffentlichung
(wer)
The Econometric Society
(wo)
New Haven, CT
(wann)
2015

DOI
doi:10.3982/TE1360
Handle
Letzte Aktualisierung
10.03.2025, 11:41 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Noguchi, Yuichi
  • The Econometric Society

Entstanden

  • 2015

Ähnliche Objekte (12)