Arbeitspapier

Multi-Horizon Equity Returns Predictability via Machine Learning

We examine the predictability of expected stock returns across horizons using machine learning. We use neural networks, and gradient boosted regression trees on the U.S. and international equity datasets. We find that predictability of returns using neural networks models decreases with longer forecasting horizon. We also document the profitability of long-short portfolios, which were created using predictions of cumulative returns at various horizons, before and after accounting for transaction costs. There is a trade-off between higher transaction costs connected to frequent rebalancing and greater returns on shorter horizons. However, we show that increasing the forecasting horizon while matching the rebalancing period increases risk-adjusted returns after transaction cost for the U.S. We combine predictions of expected returns at multiple horizons using double-sorting and buy/hold spread, a turnover reducing strategy. Using double sorts significantly increases profitability on the U.S. sample. Buy/hold spread portfolios have better risk-adjusted profitability in the U.S.

Sprache
Englisch

Erschienen in
Series: IES Working Paper ; No. 2/2021

Klassifikation
Wirtschaft
Portfolio Choice; Investment Decisions
Asset Pricing; Trading Volume; Bond Interest Rates
International Financial Markets
Large Data Sets: Modeling and Analysis
Thema
Machine learning
asset pricing
horizon predictability
anomalies

Ereignis
Geistige Schöpfung
(wer)
Nechvatalova, Lenka
Ereignis
Veröffentlichung
(wer)
Charles University in Prague, Institute of Economic Studies (IES)
(wo)
Prague
(wann)
2021

Handle
Letzte Aktualisierung
10.03.2025, 11:46 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Nechvatalova, Lenka
  • Charles University in Prague, Institute of Economic Studies (IES)

Entstanden

  • 2021

Ähnliche Objekte (12)