Artikel

Predicting house prices using DMA method: Evidence from Turkey

The aim of this study is to analyze the dynamics of the housing market in Turkey's economy and to examine the impact of variables related to housing prices. Preferred by many international housing investors, Turkey hosts profitable real estate investments as one of the developing countries with a shining housing market. This study applies the dynamic model averaging (DMA) methodology to predict monthly house price growth. With the increasing use of information technologies, Google online searches are incorporated into the study. For this purpose, twelve independent variables, with the Residential Property Price Index as the dependent variable, were used in the period January 2010-December 2019. According to the analysis results, it was observed that some variables, such as bond yields, the level of mortgages, foreign direct investments, unemployment, industrial production, exchange rates, and Google Trends index, are determinants of the Residential Property Price Index.

Sprache
Englisch

Erschienen in
Journal: Economies ; ISSN: 2227-7099 ; Volume: 10 ; Year: 2022 ; Issue: 3 ; Pages: 1-27 ; Basel: MDPI

Klassifikation
Wirtschaft
Thema
DMA
Google Trends index
housing price prediction
RPPI
Turkey

Ereignis
Geistige Schöpfung
(wer)
Hacıevliyagil, Nuri
Drachal, Krzysztof
Eksi, Ibrahim Halil
Ereignis
Veröffentlichung
(wer)
MDPI
(wo)
Basel
(wann)
2022

DOI
doi:10.3390/economies10030064
Handle
Letzte Aktualisierung
10.03.2025, 11:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Hacıevliyagil, Nuri
  • Drachal, Krzysztof
  • Eksi, Ibrahim Halil
  • MDPI

Entstanden

  • 2022

Ähnliche Objekte (12)