Arbeitspapier

Robust estimation of zero-inflated count models

Applications of zero-inflated count data models have proliferated in empirical economic research. There is a downside to this development, as zero-inflated Poisson or zero-inflated Negative Binomial Maximum Likelihood estimators are not robust to misspecification. In contrast, simple Poisson regression provides consistent parameter estimates even in the presence of excess zeros. The advantages of the Poisson approach are illustrated in a series of Monte Carlo simulations.

Language
Englisch

Bibliographic citation
Series: Working Paper ; No. 0908

Classification
Wirtschaft
Hypothesis Testing: General
Single Equation Models; Single Variables: Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions; Probabilities
Subject
excess zeros
Poisson
overdispersion
negative binomial regression
Zähldatenmodell
Stochastischer Prozess
Maximum-Likelihood-Methode
Monte-Carlo-Methode
Robustes Verfahren
Theorie

Event
Geistige Schöpfung
(who)
Staub, Kevin E.
Winkelmann, Rainer
Event
Veröffentlichung
(who)
University of Zurich, Socioeconomic Institute
(where)
Zurich
(when)
2009

Handle
Last update
10.03.2025, 11:46 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Staub, Kevin E.
  • Winkelmann, Rainer
  • University of Zurich, Socioeconomic Institute

Time of origin

  • 2009

Other Objects (12)