Networks of causal relationships in the U.S. stock market

Abstract: We consider a network-based framework for studying causal relationships in financial markets and demonstrate this approach by applying it to the entire U.S. stock market. Directed networks (referred to as “causal market graphs”) are constructed based on publicly available stock prices time series data during 2001–2020, using Granger causality as a measure of pairwise causal relationships between all stocks. We consider the dynamics of structural properties of the constructed network snapshots, group stocks into network-based clusters, as well as identify the most “influential” market sectors via the PageRank algorithm. Interestingly, we observed drastic changes in the considered network characteristics in the years that corresponded to significant global-scale events, most notably, the financial crisis of 2008 and the COVID-19 pandemic of 2020.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
Networks of causal relationships in the U.S. stock market ; volume:10 ; number:1 ; year:2022 ; pages:177-190 ; extent:14
Dependence modeling ; 10, Heft 1 (2022), 177-190 (gesamt 14)

Urheber
Shirokikh, Oleg
Pastukhov, Grigory
Semenov, Alexander
Butenko, Sergiy
Veremyev, Alexander
Pasiliao, Eduardo L.
Boginski, Vladimir

DOI
10.1515/demo-2022-0110
URN
urn:nbn:de:101:1-2022072714102288677344
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
15.08.2025, 07:24 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Shirokikh, Oleg
  • Pastukhov, Grigory
  • Semenov, Alexander
  • Butenko, Sergiy
  • Veremyev, Alexander
  • Pasiliao, Eduardo L.
  • Boginski, Vladimir

Ähnliche Objekte (12)