Arbeitspapier

Dynamic semiparametric factor model with a common break

For change-point analysis of high dimensional time series, we consider a semiparametric model with dynamic structural break factors. The observations are described by a few low dimensional factors with time-invariate loading functions of covariates. The unknown structural break in time models the regime switching e ects introduced by exogenous shocks. In particular, the factors are assumed to be nonstationary and follow a Vector Autoregression (VAR) process with a structural break. In addition, to account for the known spatial discrepancies, we introduce discrete loading functions. We study the theoretical properties of the estimates of the loading functions and the factors. Moreover, we provide both the consistency and the asymptotic convergence results for making inference on the common breakpoint in time. The estimation precision is evaluated via a simulation study. Finally we present two empirical illustrations on modeling the dynamics of the minimum wage policy in China and analyzing a limit order book dataset.

Sprache
Englisch

Erschienen in
Series: SFB 649 Discussion Paper ; No. 2017-026

Klassifikation
Wirtschaft
Thema
high dimensional time series
change-point analysis
temporal and cross-sectional dependence
vector autoregressive process

Ereignis
Geistige Schöpfung
(wer)
Chen, Likai
Wang, Weining
Wu, Wei Biao
Ereignis
Veröffentlichung
(wer)
Humboldt University of Berlin, Collaborative Research Center 649 - Economic Risk
(wo)
Berlin
(wann)
2017

Handle
Letzte Aktualisierung
20.09.2024, 08:24 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Chen, Likai
  • Wang, Weining
  • Wu, Wei Biao
  • Humboldt University of Berlin, Collaborative Research Center 649 - Economic Risk

Entstanden

  • 2017

Ähnliche Objekte (12)