Super‐Resolution Detection of DNA Nanostructures Using a Nanopore

Abstract: High‐resolution analysis of biomolecules has brought unprecedented insights into fundamental biological processes and dramatically advanced biosensing. Notwithstanding the ongoing resolution revolution in electron microscopy and optical imaging, only a few methods are presently available for high‐resolution analysis of unlabeled single molecules in their native states. Here, label‐free electrical sensing of structured single molecules with a spatial resolution down to single‐digit nanometers is demonstrated. Using a narrow solid‐state nanopore, the passage of a series of nanostructures attached to a freely translocating DNA molecule is detected, resolving individual nanostructures placed as close as 6 nm apart and with a surface‐to‐surface gap distance of only 2 nm. Such super‐resolution ability is attributed to the nanostructure‐induced enhancement of the electric field at the tip of the nanopore. This work demonstrates a general approach to improving the resolution of single‐molecule nanopore sensing and presents a critical advance towards label‐free, high‐resolution DNA sequence mapping, and digital information storage independent of molecular motors.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
Super‐Resolution Detection of DNA Nanostructures Using a Nanopore ; day:12 ; month:02 ; year:2023 ; extent:9
Advanced materials ; (12.02.2023) (gesamt 9)

Urheber
Chen, Kaikai
Choudhary, Adnan
Sandler, Sarah E.
Maffeo, Christopher
Ducati, Caterina
Aksimentiev, Aleksei
Keyser, Ulrich F.

DOI
10.1002/adma.202207434
URN
urn:nbn:de:101:1-2023021314073349262587
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
14.08.2025, 11:01 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Chen, Kaikai
  • Choudhary, Adnan
  • Sandler, Sarah E.
  • Maffeo, Christopher
  • Ducati, Caterina
  • Aksimentiev, Aleksei
  • Keyser, Ulrich F.

Ähnliche Objekte (12)