Polymeric Nanoparticles with Neglectable Protein Corona

Abstract: The current understanding of nanoparticle–protein interactions indicates that they rapidly adsorb proteins upon introduction into a living organism. The formed protein corona determines thereafter identity and fate of nanoparticles in the body. The present study evaluates the protein affinity of three core‐crosslinked polymeric nanoparticles with long circulation times, differing in the hydrophilic polymer material forming the particle surface, namely poly (N‐2‐hydroxypropylmethacrylamide) (pHPMA), polysarcosine (pSar), and poly (ethylene glycol) (PEG). This includes the nanotherapeutic CPC634, which is currently in clinical phase II evaluation. To investigate possible protein corona formation, the nanoparticles are incubated in human blood plasma and separated by asymmetrical flow field‐flow fractionation (AF4). Notably, light scattering shows no detectable differences in particle size or polydispersity upon incubation with plasma for all nanoparticles, while in gel electrophoresis, minor amounts of proteins can be detected in the particle fraction. Label‐free quantitative proteomics is additionally applied to analyze and quantify the composition of the proteins. It proves that some proteins are enriched, but their concentration is significantly less than one protein per particle. Thus, most of the nanoparticles are not associated with any proteins. Therefore, this work underlines that polymeric nanoparticles can be synthesized, for which a protein corona formation does not take place.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
Polymeric Nanoparticles with Neglectable Protein Corona ; volume:16 ; number:18 ; year:2020 ; extent:13
Small ; 16, Heft 18 (2020) (gesamt 13)

Creator
Alberg, Irina
Kramer, Stefan
Schinnerer, Meike
Hu, Qizhi
Seidl, Christine
Leps, Christian
Drude, Natascha
Möckel, Diana
Rijcken, Cristianne
Lammers, Twan
Diken, Mustafa
Maskos, Michael
Morsbach, Svenja
Landfester, Katharina
Tenzer, Stefan
Barz, Matthias
Zentel, Rudolf

DOI
10.1002/smll.201907574
URN
urn:nbn:de:101:1-2022060616075216221038
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
15.08.2025, 7:27 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

Other Objects (12)