Arbeitspapier
Option characteristics as cross-sectional predictors
We provide the first comprehensive analysis of option information for pricing the cross-section of stock returns by jointly examining extensive sets of firm and option characteristics. Using portfolio sorts and high-dimensional methods, we show that certain option measures have significant predictive power, even after controlling for firm characteristics, earning a Fama-French three-factor alpha in excess of 20% per annum. Our analysis further reveals that the strongest option characteristics are associated with information about asset mispricing and future tail return realizations. Our findings are consistent with models of informed trading and limits to arbitrage.
- Sprache
-
Englisch
- Erschienen in
-
Series: LawFin Working Paper ; No. 37
- Klassifikation
-
Wirtschaft
Estimation: General
Semiparametric and Nonparametric Methods: General
Portfolio Choice; Investment Decisions
Asset Pricing; Trading Volume; Bond Interest Rates
Information and Market Efficiency; Event Studies; Insider Trading
- Thema
-
Asset Pricing
Factor Models
High-dimensional Methods
Option Characteristics
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Neuhierl, Andreas
Tang, Xiaoxiao
Varneskov, Rasmus Tangsgaard
Zhou, Guofu
- Ereignis
-
Veröffentlichung
- (wer)
-
Goethe University, Center for Advanced Studies on the Foundations of Law and Finance (LawFin)
- (wo)
-
Frankfurt a. M.
- (wann)
-
2022
- Handle
- URN
-
urn:nbn:de:hebis:30:3-652441
- Letzte Aktualisierung
-
10.03.2025, 11:44 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Neuhierl, Andreas
- Tang, Xiaoxiao
- Varneskov, Rasmus Tangsgaard
- Zhou, Guofu
- Goethe University, Center for Advanced Studies on the Foundations of Law and Finance (LawFin)
Entstanden
- 2022