Arbeitspapier

Option characteristics as cross-sectional predictors

We provide the first comprehensive analysis of option information for pricing the cross-section of stock returns by jointly examining extensive sets of firm and option characteristics. Using portfolio sorts and high-dimensional methods, we show that certain option measures have significant predictive power, even after controlling for firm characteristics, earning a Fama-French three-factor alpha in excess of 20% per annum. Our analysis further reveals that the strongest option characteristics are associated with information about asset mispricing and future tail return realizations. Our findings are consistent with models of informed trading and limits to arbitrage.

Sprache
Englisch

Erschienen in
Series: LawFin Working Paper ; No. 37

Klassifikation
Wirtschaft
Estimation: General
Semiparametric and Nonparametric Methods: General
Portfolio Choice; Investment Decisions
Asset Pricing; Trading Volume; Bond Interest Rates
Information and Market Efficiency; Event Studies; Insider Trading
Thema
Asset Pricing
Factor Models
High-dimensional Methods
Option Characteristics

Ereignis
Geistige Schöpfung
(wer)
Neuhierl, Andreas
Tang, Xiaoxiao
Varneskov, Rasmus Tangsgaard
Zhou, Guofu
Ereignis
Veröffentlichung
(wer)
Goethe University, Center for Advanced Studies on the Foundations of Law and Finance (LawFin)
(wo)
Frankfurt a. M.
(wann)
2022

Handle
URN
urn:nbn:de:hebis:30:3-652441
Letzte Aktualisierung
10.03.2025, 11:44 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Neuhierl, Andreas
  • Tang, Xiaoxiao
  • Varneskov, Rasmus Tangsgaard
  • Zhou, Guofu
  • Goethe University, Center for Advanced Studies on the Foundations of Law and Finance (LawFin)

Entstanden

  • 2022

Ähnliche Objekte (12)