Estimating soil moisture conditions for drought monitoring with random forests and a simple soil moisture accounting scheme

Abstract Soil moisture is a key variable for drought monitoring, but soil moisture measurements networks are very scarce. Land-surface models can provide a valuable alternative for simulating soil moisture dynamics, but only a few countries have such modelling schemes implemented for monitoring soil moisture at high spatial resolution. In this study, a soil moisture accounting model (SMA) was regionalized over the Iberian Peninsula, taking as a reference the soil moisture simulated by a high-resolution land-surface model. To estimate the soil water holding capacity, the sole parameter required to run the SMA model, two approaches were compared: the direct estimation from European soil maps using pedotransfer functions or an indirect estimation by a machine learning approach, random forests, using as predictors altitude, temperature, precipitation, potential evapotranspiration and land use. Results showed that the random forest model estimates are more robust, especially for estimating low soil moisture levels. Consequently, the proposed approach can provide an efficient way to simulate daily soil moisture and therefore monitor soil moisture droughts, in contexts where high-resolution soil maps are not available, as it relies on a set of covariates that can be reliably estimated from global databases.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
Estimating soil moisture conditions for drought monitoring with random forests and a simple soil moisture accounting scheme ; volume:22 ; number:4 ; year:2022 ; pages:1325-1334 ; extent:10
Natural hazards and earth system sciences ; 22, Heft 4 (2022), 1325-1334 (gesamt 10)

Creator
Tramblay, Yves
Quintana Seguí, Pere

DOI
10.5194/nhess-22-1325-2022
URN
urn:nbn:de:101:1-2022041405165709118001
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
15.08.2025, 7:26 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Tramblay, Yves
  • Quintana Seguí, Pere

Other Objects (12)