Artikel

Panel data estimation for correlated random coefficients models

This paper considers methods of estimating a static correlated random coefficient model with panel data. We mainly focus on comparing two approaches of estimating unconditional mean of the coefficients for the correlated random coefficients models, the group mean estimator and the generalized least squares estimator. For the group mean estimator, we show that it achieves Chamberlain (1992) semi-parametric efficiency bound asymptotically. For the generalized least squares estimator, we show that when T is large, a generalized least squares estimator that ignores the correlation between the individual coefficients and regressors is asymptotically equivalent to the group mean estimator. In addition, we give conditions where the standard within estimator of the mean of the coefficients is consistent. Moreover, with additional assumptions on the known correlation pattern, we derive the asymptotic properties of panel least squares estimators. Simulations are used to examine the finite sample performances of different estimators.

Sprache
Englisch

Erschienen in
Journal: Econometrics ; ISSN: 2225-1146 ; Volume: 7 ; Year: 2019 ; Issue: 1 ; Pages: 1-18 ; Basel: MDPI

Klassifikation
Wirtschaft
Estimation: General
Multiple or Simultaneous Equation Models: Panel Data Models; Spatio-temporal Models
Thema
panel data
correlated random coefficients
efficiency bound

Ereignis
Geistige Schöpfung
(wer)
Hsiao, Cheng
Li, Qi
Liang, Zhongwen
Xie, Wei
Ereignis
Veröffentlichung
(wer)
MDPI
(wo)
Basel
(wann)
2019

DOI
doi:10.3390/econometrics7010007
Handle
Letzte Aktualisierung
10.03.2025, 11:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Hsiao, Cheng
  • Li, Qi
  • Liang, Zhongwen
  • Xie, Wei
  • MDPI

Entstanden

  • 2019

Ähnliche Objekte (12)