Development of an LSTM broadcasting deep-learning framework for regional air pollution forecast improvement

Abstract 2.5 and O3 forecasts for the next 48 h were obtained using 3D chemical transport model simulation results and ground observation data as the inputs. The root mean square error associated with the proposed framework was 40 % and 20 % lower than those of the Weather Research and Forecasting–Community Multiscale Air Quality model and an offline combination of the deep-learning and spatial interpolation methods, respectively. The novel LSTM broadcasting framework can be extended for air pollution forecasting in other regions of interest.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
Development of an LSTM broadcasting deep-learning framework for regional air pollution forecast improvement ; volume:15 ; number:22 ; year:2022 ; pages:8439-8452 ; extent:14
Geoscientific model development ; 15, Heft 22 (2022), 8439-8452 (gesamt 14)

Urheber
Sun, Haochen
Fung, Jimmy C. H.
Chen, Yiang
Li, Zhenning
Yuan, Dehao
Chen, Wanying
Lu, Xingcheng

DOI
10.5194/gmd-15-8439-2022
URN
urn:nbn:de:101:1-2022112404304634171543
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
15.08.2025, 07:34 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Sun, Haochen
  • Fung, Jimmy C. H.
  • Chen, Yiang
  • Li, Zhenning
  • Yuan, Dehao
  • Chen, Wanying
  • Lu, Xingcheng

Ähnliche Objekte (12)