Cointegration and Error Correction Modelling in Time-Series Analysis: A Brief Introduction

Abstract: Criminological research is often based on time-series data showing some type of trend movement. Trending time-series may correlate strongly even in cases where no causal relationship exists (spurious causality). To avoid this problem researchers often apply some technique of detrending their data, such as by differencing the series. This approach, however, may bring up another problem: that of spurious non-causality. Both problems can, in principle, be avoided if the series under investigation are “difference-stationary” (if the trend movements are stochastic) and “cointegrated” (if the stochastically changing trendmovements in different variables correspond to each other). The article gives a brief introduction to key instruments and interpretative tools applied in cointegration modelling. https://www.ijcv.org/index.php/ijcv/article/view/3055

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
Cointegration and Error Correction Modelling in Time-Series Analysis: A Brief Introduction ; volume:8 ; number:2 ; day:22 ; month:06 ; year:2015
International journal of conflict and violence ; 8, Heft 2 (22.06.2015)

Urheber
Helmut Thome

DOI
10.4119/ijcv-3055
URN
urn:nbn:de:101:1-2020062210595378700078
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
14.08.2025, 10:49 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Helmut Thome

Ähnliche Objekte (12)