Karst spring recession and classification: efficient, automated methods for both fast- and slow-flow components
Abstract > 0.85 among all recession events simulated by the recession parameters derived from all combinations of recession extraction methods and parameter optimization approaches. While there are variabilities among parameters estimated by different combinations of extraction methods, optimization approaches, and seasons, we found much higher variability among individual recession events. We provided suggestions to reduce the uncertainty among individual recession events and raised questions about how to improve confidence in the system's attributes derived from recession parameters.
- Standort
-
Deutsche Nationalbibliothek Frankfurt am Main
- Umfang
-
Online-Ressource
- Sprache
-
Englisch
- Erschienen in
-
Karst spring recession and classification: efficient, automated methods for both fast- and slow-flow components ; volume:26 ; number:21 ; year:2022 ; pages:5431-5447 ; extent:17
Hydrology and earth system sciences ; 26, Heft 21 (2022), 5431-5447 (gesamt 17)
- DOI
-
10.5194/hess-26-5431-2022
- URN
-
urn:nbn:de:101:1-2022110304205027721148
- Rechteinformation
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Letzte Aktualisierung
-
15.08.2025, 07:31 MESZ
Datenpartner
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.