Complex Lagrangians in a hyperKähler manifold and the relative Albanese

Abstract: Let M be the moduli space of complex Lagrangian submanifolds of a hyperKähler manifold X, and let ω̄: ̂ → M be the relative Albanese over M. We prove that ̂ has a natural holomorphic symplectic structure. The projection ω̄ defines a completely integrable structure on the symplectic manifold ̂. In particular, the fibers of ω̄ are complex Lagrangians with respect to the symplectic form on ̂. We also prove analogous results for the relative Picard over M.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
Complex Lagrangians in a hyperKähler manifold and the relative Albanese ; volume:7 ; number:1 ; year:2020 ; pages:230-240 ; extent:11
Complex manifolds ; 7, Heft 1 (2020), 230-240 (gesamt 11)

Creator
Biswas, Indranil
Gómez, Tomás L.
Oliveira, André

DOI
10.1515/coma-2020-0106
URN
urn:nbn:de:101:1-2410281514397.669006793357
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
15.08.2025, 7:34 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Biswas, Indranil
  • Gómez, Tomás L.
  • Oliveira, André

Other Objects (12)