Complex Lagrangians in a hyperKähler manifold and the relative Albanese
Abstract: Let M be the moduli space of complex Lagrangian submanifolds of a hyperKähler manifold X, and let ω̄: ̂ → M be the relative Albanese over M. We prove that ̂ has a natural holomorphic symplectic structure. The projection ω̄ defines a completely integrable structure on the symplectic manifold ̂. In particular, the fibers of ω̄ are complex Lagrangians with respect to the symplectic form on ̂. We also prove analogous results for the relative Picard over M.
- Location
-
Deutsche Nationalbibliothek Frankfurt am Main
- Extent
-
Online-Ressource
- Language
-
Englisch
- Bibliographic citation
-
Complex Lagrangians in a hyperKähler manifold and the relative Albanese ; volume:7 ; number:1 ; year:2020 ; pages:230-240 ; extent:11
Complex manifolds ; 7, Heft 1 (2020), 230-240 (gesamt 11)
- Creator
-
Biswas, Indranil
Gómez, Tomás L.
Oliveira, André
- DOI
-
10.1515/coma-2020-0106
- URN
-
urn:nbn:de:101:1-2410281514397.669006793357
- Rights
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Last update
-
15.08.2025, 7:34 AM CEST
Data provider
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.
Associated
- Biswas, Indranil
- Gómez, Tomás L.
- Oliveira, André