Artikel

Gini index estimation within pre-specified error bound: Application to Indian household survey data

The Gini index, a widely used economic inequality measure, is computed using data whose designs involve clustering and stratification, generally known as complex household surveys. Under complex household survey, we develop two novel procedures for estimating Gini index with a pre-specified error bound and confidence level. The two proposed approaches are based on the concept of sequential analysis which is known to be economical in the sense of obtaining an optimal cluster size which reduces project cost (that is total sampling cost) thereby achieving the pre-specified error bound and the confidence level under reasonable assumptions. Some large sample properties of the proposed procedures are examined without assuming any specific distribution. Empirical illustrations of both procedures are provided using the consumption expenditure data obtained by National Sample Survey (NSS) Organization in India.

Sprache
Englisch

Erschienen in
Journal: Econometrics ; ISSN: 2225-1146 ; Volume: 8 ; Year: 2020 ; Issue: 2 ; Pages: 1-20 ; Basel: MDPI

Klassifikation
Wirtschaft
Thema
complex household survey
confidence interval
income distribution
inequality
sequential analysis

Ereignis
Geistige Schöpfung
(wer)
Bilson Darku, Francis
Konietschke, Frank
Chattopadhyay, Bhargab
Ereignis
Veröffentlichung
(wer)
MDPI
(wo)
Basel
(wann)
2020

DOI
doi:10.3390/econometrics8020026
Handle
Letzte Aktualisierung
10.03.2025, 11:41 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Bilson Darku, Francis
  • Konietschke, Frank
  • Chattopadhyay, Bhargab
  • MDPI

Entstanden

  • 2020

Ähnliche Objekte (12)