Compact Terahertz Dielectric Folded Metasurface

Abstract: Despite modern terahertz (THz) systems benefit from the developments in metasurfaces with flexible wavefront manipulation capabilities, the large propagation space between the THz source/detector and metasurface component, as well as the inherent insertion loss of metasurfaces, are the two main bottlenecks that hinder metasurface‐based THz devices from becoming a practical technology. This article addresses these two problems by demonstrating a compact, high‐efficiency folded metasurface system in the THz band. The device comprises two parallel dielectric metasurfaces, between which the THz waves are confined to reduce the system volume. The bottom reflective metasurface consists of an array of anisotropic dielectric resonators, which can simultaneously manipulate THz waves’ phase and polarization properties. The upper metasurface is a dielectric Bragg polarizer that selects the desired linear polarization of THz waves to pass through. Low‐loss and nondispersive high‐resistivity silicon is used as the material for both metasurfaces in this design, which is essential to achieving high efficiency. The compact and high‐efficiency folded THz metasystem is further experimentally verified. The introduced folded device can be used in diverse applications such as high‐speed THz communications, non‐destructive detection, and imaging systems, significantly reducing their volume and increasing their radiation efficiency.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
Compact Terahertz Dielectric Folded Metasurface ; day:26 ; month:12 ; year:2021 ; extent:12
Advanced optical materials ; (26.12.2021) (gesamt 12)

Creator
Zhu, Shu‐Yan
Wu, Geng‐Bo
Pang, Stella W.
Chan, Chi Hou

DOI
10.1002/adom.202101663
URN
urn:nbn:de:101:1-2021122714093664694335
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
15.08.2025, 7:28 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Zhu, Shu‐Yan
  • Wu, Geng‐Bo
  • Pang, Stella W.
  • Chan, Chi Hou

Other Objects (12)