Hardware-in-the-loop test of learning-based controllers for grid-supportive building heating operation

Abstract: While MPC is the state-of-the-art approach for building heating control with proven cost savings and improvement in energy flexibility, in practice, buildings are operated by simple rules-based controllers which are not able to accomplish an energy efficient and flexible operation. This paper explores the suitability of deep neural networks for approximating optimal economic MPC strategies for this task. In particular, we develop a convolutional neural network controller and test it in a closed-loop simulation against MPC and an improved predictive rule-based controller. The learned controller is easy to implement and fast to process on standard building control hardware. The feasibility, performance and robustness of the learned controller is validated in a realistic hardware-in-the-loop test setup for the demand-responsive operation of a heat pump combined with a storage tank

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch
Anmerkungen
IFAC-PapersOnLine. - 53, 2 (2020) , 17107-17112, ISSN: 2405-8963

Ereignis
Veröffentlichung
(wo)
Freiburg
(wer)
Universität
(wann)
2024
Urheber
Frison, Lilli
Paul, Sweetin
Koller, Torsten
Fischer, David
Frison, Gianluca
Bödecker, Joschka
Engelmann, Peter
Beteiligte Personen und Organisationen
Neurorobotics Lab

DOI
10.1016/j.ifacol.2020.12.1652
URN
urn:nbn:de:bsz:25-freidok-2554382
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
15.08.2025, 07:21 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Frison, Lilli
  • Paul, Sweetin
  • Koller, Torsten
  • Fischer, David
  • Frison, Gianluca
  • Bödecker, Joschka
  • Engelmann, Peter
  • Neurorobotics Lab
  • Universität

Entstanden

  • 2024

Ähnliche Objekte (12)