A machine learning approach for mapping the very shallow theoretical geothermal potential
- Location
-
Deutsche Nationalbibliothek Frankfurt am Main
- ISSN
-
2195-9706
- Extent
-
Online-Ressource
- Language
-
Englisch
- Notes
-
online resource.
- Bibliographic citation
-
A machine learning approach for mapping the very shallow theoretical geothermal potential ; volume:7 ; number:1 ; day:25 ; month:7 ; year:2019 ; pages:1-50 ; date:12.2019
Geothermal Energy ; 7, Heft 1 (25.7.2019), 1-50, 12.2019
- Classification
-
Natürliche Ressourcen, Energie und Umwelt
- Creator
-
Assouline, Dan
Mohajeri, Nahid
Gudmundsson, Agust
Scartezzini, Jean-Louis
- Contributor
-
SpringerLink (Online service)
- DOI
-
10.1186/s40517-019-0135-6
- URN
-
urn:nbn:de:101:1-2019121804245105787552
- Rights
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Last update
-
14.08.2025, 10:47 AM CEST
Data provider
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.
Associated
- Assouline, Dan
- Mohajeri, Nahid
- Gudmundsson, Agust
- Scartezzini, Jean-Louis
- SpringerLink (Online service)