Halide Remixing under Device Operation Imparts Stability on Mixed‐Cation Mixed‐Halide Perovskite Solar Cells

Abstract: Mixed‐halide mixed‐cation hybrid perovskites are among the most promising perovskite compositions for application in a variety of optoelectronic devices due to their high performance, low cost, and bandgap‐tuning capabilities. Instability pathways such as those driven by ionic migration, however, continue to hinder their further progress. Here, an operando variable‐pitch synchrotron grazing‐incidence wide‐angle X‐ray scattering technique is used to track the surface and bulk structural changes in mixed‐halide mixed‐cation perovskite solar cells under continuous load and illumination. By monitoring the evolution of the material structure, it is demonstrated that halide remixing along the electric field and illumination direction during operation hinders phase segregation and limits device instability. Correlating the evolution with directionality‐ and depth‐dependent analyses, it is proposed that this halide remixing is induced by an electrostrictive effect acting along the substrate out‐ofplane direction. However, this stabilizing effect is overwhelmed by competing halide demixing processes in devices exposed to humid air or with poorer starting performance. The findings shed new light on understanding halide de‐ and re‐mixing competitions and their impact on device longevity. These operando techniques allow real‐time tracking of the structural evolution in full optoelectronic devices and unveil otherwise inaccessible insights into rapid structural evolution under external stress conditions.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
Halide Remixing under Device Operation Imparts Stability on Mixed‐Cation Mixed‐Halide Perovskite Solar Cells ; day:07 ; month:08 ; year:2022 ; extent:9
Advanced materials ; (07.08.2022) (gesamt 9)

Creator
Ruggeri, Edoardo
Anaya, Miguel
Gałkowski, Krzysztof
Abfalterer, Anna
Chiang, Yu‐Hsien
Ji, Kangyu
Andaji‐Garmaroudi, Zahra
Stranks, Samuel D.

DOI
10.1002/adma.202202163
URN
urn:nbn:de:101:1-2022080815191111433395
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
15.08.2025, 7:23 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Ruggeri, Edoardo
  • Anaya, Miguel
  • Gałkowski, Krzysztof
  • Abfalterer, Anna
  • Chiang, Yu‐Hsien
  • Ji, Kangyu
  • Andaji‐Garmaroudi, Zahra
  • Stranks, Samuel D.

Other Objects (12)