Continuous functions with impermeable graphs

Abstract: We construct a Hölder continuous function on the unit interval which coincides in uncountably (in fact continuum) many points with every function of total variation smaller than 1 passing through the origin. We conclude that this function has impermeable graph—one of the key concepts introduced in this paper—and we present further examples of functions both with permeable and impermeable graphs. Moreover, we show that typical (in the sense of Baire category) continuous functions have permeable graphs. The first example function is subsequently used to construct an example of a continuous function on the plane which is intrinsically Lipschitz continuous on the complement of the graph of a Hölder continuous function with impermeable graph, but which is not Lipschitz continuous on the plane. As another main result, we construct a continuous function on the unit interval which coincides in a set of Hausdorff dimension 1 with every function of total variation smaller than 1 which passes through the origin.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
Continuous functions with impermeable graphs ; day:07 ; month:06 ; year:2023 ; extent:28
Mathematische Nachrichten ; (07.06.2023) (gesamt 28)

Urheber
Buczolich, Zoltán
Leobacher, Gunther
Steinicke, Alexander

DOI
10.1002/mana.202200268
URN
urn:nbn:de:101:1-2023060815090383796629
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
14.08.2025, 10:47 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

Ähnliche Objekte (12)