Hermitian composition operators on Hardy-Smirnov spaces

Abstract: Let Ω be an open simply connected proper subset of the complex plane and φ an analytic self map of Ω. If f is in the Hardy-Smirnov space defined on Ω, then the operator that takes f to f º φ is a composition operator. We show that for any Ω, analytic self maps that induce bounded Hermitian composition operators are of the form Φ(w) = aw + b where a is a real number. For ceratin Ω, we completely describe values of a and b that induce bounded Hermitian composition operators.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
Hermitian composition operators on Hardy-Smirnov spaces ; volume:4 ; number:1 ; year:2017 ; pages:7-17 ; extent:11
Concrete operators ; 4, Heft 1 (2017), 7-17 (gesamt 11)

Creator
Gunatillake, Gajath

DOI
10.1515/conop-2017-0002
URN
urn:nbn:de:101:1-2410301534565.075555118641
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
15.08.2025, 7:23 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Gunatillake, Gajath

Other Objects (12)