Witnessing non-Markovianity by quantum quasi-probability distributions
Abstract: We employ frames consisting of rank-one projectors (i.e. pure quantum states) and their induced informationally complete quantum measurements to represent generally mixed quantum states by quasi-probability distributions. In the case of discrete frames on finite dimensional systems this results in a vector like representation by quasi-probability vectors, while for the continuous frame of coherent states in continuous variable (CV) systems the approach directly leads to the celebrated representation by Glauber–Sudarshan P-functions and Husimi Q-functions. We explain that the Kolmogorov distances between these quasi-probability distributions lead to upper and lower bounds of the trace distance which measures the distinguishability of quantum states. We apply these results to the dynamics of open quantum systems and construct a non-Markovianity witness based on the Kolmogorov distance of the P- and Q-functions. By means of several examples we discuss the performance of this witness and demonstrate that it is useful in the regime of high entropy states for which a direct evaluation of the trace distance is typically very demanding. For Gaussian dynamics in CV systems we even find a suitable non-Markovianity measure based on the Kolmogorov distance between the P-functions which can alternatively be used as a witness for non-Gaussianity
- Sprache
-
Englisch
- Umfang
-
Online-Ressource
- Anmerkungen
-
New journal of physics. - 24 (2022) , 123022, ISSN: 1367-2630
- Standort
-
Deutsche Nationalbibliothek Frankfurt am Main
- Urheber
- Beteiligte Personen und Organisationen
-
Quantum Optics and Statistics
- Ereignis
-
Veröffentlichung
- (wo)
-
Freiburg
- (wer)
-
Universität
- (wann)
-
2022
- DOI
-
10.1088/1367-2630/aca92b
- URN
-
urn:nbn:de:bsz:25-freidok-2318395
- Rechteinformation
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Letzte Aktualisierung
-
25.03.2025, 13:43 MEZ
Datenpartner
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Beteiligte
- Richter, Moritz Ferdinand
- Wiedenmann, Raphael
- Breuer, Heinz-Peter
- Quantum Optics and Statistics
- Universität
Entstanden
- 2022