Arbeitspapier

Spatial modelling of claim frequency and claim size in insurance

In this paper models for claim frequency and claim size in non-life insurance are considered. Both covariates and spatial random effects are included allowing the modelling of a spatial dependency pattern. We assume a Poisson model for the number of claims, while claim size is modelled using a Gamma distribution. However, in contrast to the usual compound Poisson model going back to Lundberg (1903), we allow for dependencies between claim size and claim frequency. Both models for the individual and average claim sizes of a policyholder are considered. A fully Bayesian approach is followed, parameters are estimated using Markov Chain Monte Carlo (MCMC). The issue of model comparison is thoroughly addressed. Besides the deviance information criterion suggested by Spiegelhalter et al. (2002), the predictive model choice criterion (Gelfand and Ghosh (1998)) and proper scoring rules (Gneiting and Raftery (2005)) based on the posterior predictive distribution are investigated. We give an application to a comprehensive data set from a German car insurance company. The inclusion of spatial effects significantly improves the models for both claim frequency and claim size and also leads to more accurate predictions of the total claim sizes. Further we quantify the significant number of claims effects on claim size.

Language
Englisch

Bibliographic citation
Series: Discussion Paper ; No. 461

Subject
Bayesian inference
compound Poisson model
non-life insurance
proper scoring rules
spatial regression models

Event
Geistige Schöpfung
(who)
Gschlößl, Susanne
Czado, Claudia
Event
Veröffentlichung
(who)
Ludwig-Maximilians-Universität München, Sonderforschungsbereich 386 - Statistische Analyse diskreter Strukturen
(where)
München
(when)
2005

DOI
doi:10.5282/ubm/epub.1830
Handle
URN
urn:nbn:de:bvb:19-epub-1830-5
Last update
10.03.2025, 11:43 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Gschlößl, Susanne
  • Czado, Claudia
  • Ludwig-Maximilians-Universität München, Sonderforschungsbereich 386 - Statistische Analyse diskreter Strukturen

Time of origin

  • 2005

Other Objects (12)