Arbeitspapier

Tests for Serial Independence and Linearity based on Correlation Integrals

We propose information theoretic tests for serial independence and linearity in time series. The test statisticsare based on the conditional mutual information, a general measure of dependence between lagged variables. In caseof rejecting the null hypothesis, this readily provides insights into the lags through which the dependence arises.The conditional mutual information is estimated using the correlation integral from chaos theory. The signi[tanceof the test statistics is determined with a permutation procedure and a parametric bootstrap in the testsfor serial independence and linearity, respectively.The size and power properties of the tests are examined numerically and illustrated with applications to somebenchmark time series.

Language
Englisch

Bibliographic citation
Series: Tinbergen Institute Discussion Paper ; No. 01-085/1

Classification
Wirtschaft
Subject
serial independence
linearity
bootstrap
permutation test
nonparametric estimation
nonlinear time series analysis
correlation integral
Zeitreihenanalyse
Theorie
Nichtlineares Verfahren
Korrelation
Autokorrelation

Event
Geistige Schöpfung
(who)
Diks, Cees
Manzan, Sebastiano
Event
Veröffentlichung
(who)
Tinbergen Institute
(where)
Amsterdam and Rotterdam
(when)
2001

Handle
Last update
10.03.2025, 11:41 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Diks, Cees
  • Manzan, Sebastiano
  • Tinbergen Institute

Time of origin

  • 2001

Other Objects (12)