Adaptive Finite Element Methods For Optimal Control Of Second Order Hyperbolic Equations
Abstract: In this paper we consider a posteriori error estimates for space-time finite element discretizations for optimal control of hyperbolic partial dierential equations of second order. It is an extension of Meidner and Vexler (2007), where optimal control problems of parabolic equations are analyzed. The state equation is formulated as a first order system in time and a posteriori error estimates are derived separating the in uences of time, space, and control discretization. Using this information the accuracy of the solution is improved by local mesh refinement. Numerical examples are presented. Finally, we analyze the conservation of energy of the homogeneous wave equation with respect to dynamically in time changing spatial meshes.
- Standort
-
Deutsche Nationalbibliothek Frankfurt am Main
- Umfang
-
Online-Ressource
- Sprache
-
Englisch
- Erschienen in
-
Adaptive Finite Element Methods For Optimal Control Of Second Order Hyperbolic Equations ; volume:11 ; number:2 ; year:2011 ; pages:214-240
Computational methods in applied mathematics ; 11, Heft 2 (2011), 214-240
- Urheber
-
Kröner, Axel
- DOI
-
10.2478/cmam-2011-0012
- URN
-
urn:nbn:de:101:1-2410261640394.645576199278
- Rechteinformation
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Letzte Aktualisierung
-
15.08.2025, 07:28 MESZ
Datenpartner
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Beteiligte
- Kröner, Axel