Adaptive Finite Element Methods For Optimal Control Of Second Order Hyperbolic Equations

Abstract: In this paper we consider a posteriori error estimates for space-time finite element discretizations for optimal control of hyperbolic partial dierential equations of second order. It is an extension of Meidner and Vexler (2007), where optimal control problems of parabolic equations are analyzed. The state equation is formulated as a first order system in time and a posteriori error estimates are derived separating the in uences of time, space, and control discretization. Using this information the accuracy of the solution is improved by local mesh refinement. Numerical examples are presented. Finally, we analyze the conservation of energy of the homogeneous wave equation with respect to dynamically in time changing spatial meshes.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
Adaptive Finite Element Methods For Optimal Control Of Second Order Hyperbolic Equations ; volume:11 ; number:2 ; year:2011 ; pages:214-240
Computational methods in applied mathematics ; 11, Heft 2 (2011), 214-240

Urheber
Kröner, Axel

DOI
10.2478/cmam-2011-0012
URN
urn:nbn:de:101:1-2410261640394.645576199278
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
15.08.2025, 07:28 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Kröner, Axel

Ähnliche Objekte (12)