Interaural time difference sensitivity under binaural cochlear implant stimulation persists at high pulse rates up to 900 pps

Abstract: Spatial hearing remains one of the major challenges for bilateral cochlear implant (biCI) users, and early deaf patients in particular are often completely insensitive to interaural time differences (ITDs) delivered through biCIs. One popular hypothesis is that this may be due to a lack of early binaural experience. However, we have recently shown that neonatally deafened rats fitted with biCIs in adulthood quickly learn to discriminate ITDs as well as their normal hearing litter mates, and perform an order of magnitude better than human biCI users. Our unique behaving biCI rat model allows us to investigate other possible limiting factors of prosthetic binaural hearing, such as the effect of stimulus pulse rate and envelope shape. Previous work has indicated that ITD sensitivity may decline substantially at the high pulse rates often used in clinical practice. We therefore measured behavioral ITD thresholds in neonatally deafened, adult implanted biCI rats to pulse trains of 50, 300, 900 and 1800 pulses per second (pps), with either rectangular or Hanning window envelopes. Our rats exhibited very high sensitivity to ITDs at pulse rates up to 900 pps for both envelope shapes, similar to those in common clinical use. However, ITD sensitivity declined to near zero at 1800 pps, for both Hanning and rectangular windowed pulse trains. Current clinical cochlear implant (CI) processors are often set to pulse rates ≥ 900 pps, but ITD sensitivity in human CI listeners has been reported to decline sharply above ~ 300 pps. Our results suggest that the relatively poor ITD sensitivity seen at > 300 pps in human CI users may not reflect the hard upper limit of biCI ITD performance in the mammalian auditory pathway. Perhaps with training or better CI strategies good binaural hearing may be achievable at pulse rates high enough to allow good sampling of speech envelopes while delivering usable ITDs

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch
Notes
Scientific reports. - 13, 1 (2023) , 3785, ISSN: 2045-2322

Event
Veröffentlichung
(where)
Freiburg
(who)
Universität
(when)
2023
Creator
Buck, Alexa N
Buchholz, Sarah
Schnupp, Jan W. H.
Roßkothen-Kuhl, Nicole

DOI
10.1038/s41598-023-30569-0
URN
urn:nbn:de:bsz:25-freidok-2344648
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
25.03.2025, 1:43 PM CET

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

Time of origin

  • 2023

Other Objects (12)