Effects of mesophyll conductance on vegetation responses to elevated CO2 concentrations in a land surface model

Abstract: Mesophyll conductance (gm) is known to affect plant photosynthesis. However, gm is rarely explicitly considered in land surface models (LSMs), with the consequence that its role in ecosystem and large-scale carbon and water fluxes is poorly understood. In particular, the different magnitudes of gm across plant functional types (PFTs) are expected to cause spatially divergent vegetation responses to elevated CO2 concentrations. Here, an extensive literature compilation of gm across major vegetation types is used to parameterize an empirical model of gm in the LSM JSBACH and to adjust photosynthetic parameters based on simulated An − Ci curves. We demonstrate that an explicit representation of gm changes the response of photosynthesis to environmental factors, which cannot be entirely compensated by adjusting photosynthetic parameters. These altered responses lead to changes in the photosynthetic sensitivity to atmospheric CO2 concentrations which depend both on the magnitude of gm and the climatic conditions, particularly temperature. We then conducted simulations under ambient and elevated (ambient + 200 μmol/mol) CO2 concentrations for contrasting ecosystems and for historical and anticipated future climate conditions (representative concentration pathways; RCPs) globally. The gm-explicit simulations using the RCP8.5 scenario resulted in significantly higher increases in gross primary productivity (GPP) in high latitudes (+10% to + 25%), intermediate increases in temperate regions (+5% to + 15%), and slightly lower to moderately higher responses in tropical regions (−2% to +5%), which summed up to moderate GPP increases globally. Similar patterns were found for transpiration, but with a lower magnitude. Our results suggest that the effect of an explicit representation of gm is most important for simulated carbon and water fluxes in the boreal zone, where a cold climate coincides with evergreen vegetation

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch
Anmerkungen
Global change biology. - 25, 5 (2019) , 1820-1838, ISSN: 1354-1013

Ereignis
Veröffentlichung
(wo)
Freiburg
(wer)
Universität
(wann)
2020
Urheber
Knauer, Jürgen
Zaehle, Sönke
De Kauwe, Martin G.
Bahar, Nur H. A.
Evans, John R.
Medlyn, Belinda E.
Reichstein, Markus
Werner, Christiane
Beteiligte Personen und Organisationen

DOI
10.1111/gcb.14604
URN
urn:nbn:de:bsz:25-freidok-1522692
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
15.08.2025, 07:32 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

Entstanden

  • 2020

Ähnliche Objekte (12)