Artikel

Bayesian estimation and prediction based on Rayleigh record data with applications

Based on a record sample from the Rayleigh model, we consider the problem of estimating the scale and location parameters of the model and predicting the future unobserved record data. Maximum likelihood and Bayesian approaches under different loss functions are used to estimate the model's parameters. The Gibbs sampler and Metropolis-Hastings methods are used within the Bayesian procedures to draw the Markov Chain Monte Carlo (MCMC) samples, used in turn to compute the Bayes estimator and the point predictors of the future record data. Monte Carlo simulations are performed to study the behaviour and to compare methods obtained in this way. Two examples of real data have been analyzed to illustrate the procedures developed here.

Language
Englisch

Bibliographic citation
Journal: Statistics in Transition New Series ; ISSN: 2450-0291 ; Volume: 22 ; Year: 2021 ; Issue: 3 ; Pages: 59-79 ; New York: Exeley

Subject
Bayesian estimation and prediction
Rayleigh distribution
record values
Markov Chain Monte Carlo samples

Event
Geistige Schöpfung
(who)
Abu Awwad, Raed R.
Bdair, Omar M.
Abufoudeh, Ghassan K.
Event
Veröffentlichung
(who)
Exeley
(where)
New York
(when)
2021

DOI
doi:10.21307/stattrans-2021-027
Handle
Last update
10.03.2025, 11:42 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Artikel

Associated

  • Abu Awwad, Raed R.
  • Bdair, Omar M.
  • Abufoudeh, Ghassan K.
  • Exeley

Time of origin

  • 2021

Other Objects (12)