$${\mathrm Latent}}Out}$$ Latent O u t : an unsupervised deep anomaly detection approach exploiting latent space distribution

Location
Deutsche Nationalbibliothek Frankfurt am Main
ISSN
1573-0565
Extent
Online-Ressource
Language
Englisch
Notes
online resource.

Bibliographic citation
$${\mathrm Latent}}Out}$$ Latent O u t : an unsupervised deep anomaly detection approach exploiting latent space distribution ; day:24 ; month:5 ; year:2022 ; pages:1-27
Machine learning ; (24.5.2022), 1-27

Creator
Angiulli, Fabrizio
Fassetti, Fabio
Ferragina, Luca
Contributor
SpringerLink (Online service)

DOI
10.1007/s10994-022-06153-4
URN
urn:nbn:de:101:1-2022072721584802813047
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
15.08.2025, 7:21 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Angiulli, Fabrizio
  • Fassetti, Fabio
  • Ferragina, Luca
  • SpringerLink (Online service)

Other Objects (12)