Artikel

COVID-19: Data-driven mean-field-type game perspective

In this article, a class of mean-field-type games with discrete-continuous state spaces is considered. We establish Bellman systems which provide sufficiency conditions for mean-field-type equilibria in state-and-mean-field-type feedback form. We then derive unnormalized master adjoint systems (MASS). The methodology is shown to be flexible enough to capture multi-class interaction in epidemic propagation in which multiple authorities are risk-aware atomic decision-makers and individuals are risk-aware non-atomic decision-makers. Based on MASS, we present a data-driven modelling and analytics for mitigating Coronavirus Disease 2019 (COVID-19). The model integrates untested cases, age-structure, decision-making, gender, pre-existing health conditions, location, testing capacity, hospital capacity, and a mobility map of local areas, including in-cities, inter-cities, and internationally. It is shown that the data-driven model can capture most of the reported data on COVID-19 on confirmed cases, deaths, recovered, number of testing and number of active cases in 66+ countries. The model also reports non-Gaussian and non-exponential properties in 15+ countries.

Sprache
Englisch

Erschienen in
Journal: Games ; ISSN: 2073-4336 ; Volume: 11 ; Year: 2020 ; Issue: 4 ; Pages: 1-107 ; Basel: MDPI

Klassifikation
Wirtschaft
Thema
data-driven
dynamics
game theory

Ereignis
Geistige Schöpfung
(wer)
Tembine, Hamidou
Ereignis
Veröffentlichung
(wer)
MDPI
(wo)
Basel
(wann)
2020

DOI
doi:10.3390/g11040051
Handle
Letzte Aktualisierung
10.03.2025, 11:44 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Tembine, Hamidou
  • MDPI

Entstanden

  • 2020

Ähnliche Objekte (12)