Miniature-scale elastocaloric cooling by rubber-based foils

Abstract: We report on the design and characterization of a demonstrator device for miniature-scale elastocaloric (eC) cooling using a series of natural rubber (NR) foil specimens of 9 × 26.5 mm2 lateral size and thicknesses in the range of 290–900 μm. NR has the potential to meet the various challenges associated with eC cooling, as it exhibits a large adiabatic temperature change in the order of 20 K and high fatigue resistance under dynamic load, while loading forces are low. Owing to the large surface-to-volume ratio of rubber-based foils, heat transfer to heat sink and source elements is accomplished by mechanical contact enabling compact designs. Two actuators are implemented to control the performance in loading direction independent from the performance of mechanical contacting. The study of operation parameters is complemented by lumped-element modeling to understand the cycle frequency-dependent dynamics of heat transfer and resulting cooling capacity. The single-stage device operates in the strain range of 300%–700% and exhibits a temperature span up to 4.1 K, while the specific cooling power reaches 1.1 Wg−1 and the absolute cooling power 123 mW. The performance metrics show a pronounced dependence on foil thickness and heat transfer coefficient indicating a path toward future device optimization

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch
Notes
ISSN: 2515-7655

Event
Veröffentlichung
(where)
Freiburg
(who)
Universität
(when)
2024
Creator

DOI
10.1088/2515-7655/ad0cff
URN
urn:nbn:de:bsz:25-freidok-2430329
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
15.08.2025, 7:30 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

Time of origin

  • 2024

Other Objects (12)